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Abstract

Over the last years, a number of languages based on data flow

abstractions have been proposed in different important areas

including Big Data, stream processing, reactive programming,

real time analytics. While there is a general agreement that

the data flow style simplifies the access to such complex

systems compared to low level imperative APIs, this design

has been substantiated by little evidence.

In this paper, we advocate a systematic investigation of

the design principles of data flow languages and suggest

important research questions that urge to be addressed.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords reactive programming, controlled experiments

1. Introduction

I really wanted a PL that supports a language-integrated

interface [..] because I thought that was the way people

would want to program these applications [...]

Matei Zaharia, Apache Spark creator

In recent years, a number of programming languages have

been proposed for processing event streams [1], real time data

and batch data [10] that share a common design principle:

modelling the computation with data flow abstractions rather

than the traditional imperative, control flow abstractions [5].

Following this principle, programmers specify how values

depend on each other (data dependencies) and the runtime is

responsible for propagating changes. Despite its popularity

– in Big Data analytics data scientists with no programming

background are often exposed to the data flow style in the

first place – little research has been devoted to this solution

to evaluate its advantages based on factual data.

It is convenient to review the principles shared by data flow

languages. They favour data flow over control flow – control

structures are abandoned, except inside lambdas. They are

declarative. Programmers provide a high level specification

of data processing instead of defining the steps for computing

a value. They adopt a functional programming flavour that

fosters composabililty and abstracts over state. Also it pro-

vides an advantage both to (1) easily express a computation

as a pipeline of operators, and (2) to simplify parallelism,

distribution and fault tolerance. They hide the complexity

of the underlying framework (e.g., to automatically tracking

dependencies among values, to achieve fault tolerance and

replication).

Data flow languages: Examples Data flow languages have

been applied in very diverse areas. Streams for collection

libraries are available e.g., in Scala and Java 8. A variety

of sources, such as in-memory collections or databases can

be accessed uniformly. The following code filters a stream

of strings selecting only those starting with “c", transforms

them to uppercase letters and collects the result into a list:
1 List<String> l = Arrays.asList("a1", "c2", "b1", "c2");

2 l.stream()

3 .filter(s -> s.startsWith("c"))

4 .map(String::toUpperCase)

5 .sorted()

6 .collect(Collectors.toList)

In the area of animations and user interfaces, reactive

programming [1] is a programming paradigm that aims

at supporting reactive applications with dedicated language

abstractions (e.g., event streams, signals). Rx is a library for

asynchronous reactive programming where producers push

values to consumers that process the values as soon as they

are available. This code snippet1 takes a value out of 10 from

the network and prints string-converted batches of 5 values:
1 getDataFromNetwork()

2 .skip(10)

3 .take(5)

4 .map({ s -> return s + " transformed" })

5 .subscribe({ println "onNext => " + it })

The data flow style has been adopted also in batch and

real time analytics, where it provide means to process

large amounts of data on clusters of commodity hardware

abstracting over low level details such as parallel execution

and fault tolerance. These systems include PigLatin, Dryad,

Spark and Spark Streaming. For example, the following code2

1 http://reactivex.io/intro.html
2 http://spark.apache.org/examples.html
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implements the word count application in Spark and caches

intermediate results in memory:
1 val textFile = sc.textFile("hdfs://...")

2 val counts = textFile.flatMap(line => line.split(" "))

3 .map(word => (word, 1))

4 .cache

5 .reduceByKey(_ + _)

6 counts.saveAsTextFile("hdfs://...")

Despite its popularity, to date, the advantage of a spread

adoption of the data flow style is far from obvious. For exam-

ple, providing highly specialised versions of operators comes

at a price: The Rx reactive framework lists more than 70 core

operators (up to ∼400 including their variants). Another as-

pect concerns the semantics of data flows that is often subtle.

Spark supports the same operators as Scala collections (e.g.,

filter), but Spark operators are lazy, Scala collections are

strict. A similar mismatch can be observed between Java 8

streams and JavaRx, which have similar operators. Yet, Java 8

streams are pull based (an input collection is consumed upon

stream creation), JavaRx is push based (operators process

data as soon as data are created). Another issue concerns the

level of abstraction adopted by the language. For example, in

Spark one can cache/persist a stream to explicitly reify

intermediate computations – a functionality not available in

other frameworks. Approaches based on lifting, like Java 8,

require the programmer to build potentially verbose abstract

representations – a “receipt” of the computation – opened by

.stream and converted back to a concrete collection with

e.g., collect(Collectors.toList).

The case of Reactive Programming In previous work, we

started investigating the effect of data flow abstractions in

the context of reactive programming [4]. We organised a con-

trolled experiment with 38 subjects that was later repeated,

extending it to 127 subjects. The experiment evaluated the

impact of the reactive programming style on software com-

prehension compared to the Observer design pattern.

The results, based on 10 different applications in a between

subjects design, show that correctness of comprehension

is enhanced in the reactive style, and comprehension time

does not increase (i.e., reactive programming does not trade

accuracy for time).

Research questions We advocate similar studies that sys-

tematically investigate the design of data flow languages and

provide guidelines to developers of future data flow languages.

Research on the usability of such languages should answer,

in particular, the following questions:

• Is the data flow style more comprehensible [7] than the

imperative approach or pure functional programming?

• What is the effect on comprehension of semantics variations

like push/pull, cached, lazy/eager evaluation and how easily

do programmers master such concepts?

• What is the effect of the data flow style on API proto-

cols [8]? It is simpler for programmers to understand and

obey protocols in this style?

• A rule of thumb in language design is to make the common

case easy to express, tolerating complexity for rare cases.

This is especially an issue for data flow languages where

specialised operators make the API much harder to master.

Do data flow languages provide a “simple enough" solution

for the common case without excessive proliferation of

overspecialised operators?

• Expressing computations with data flows involves mixing

the right operators in a combination that is specific for

the problem at hand. Are such highly specialised pipelines

more difficult to modify correctly than imperative code?

What is the effect of the data flow style on maintainability?

• What is the effect of the data flow style on other activities in

the development process besides text based programming

such as debugging [6] and software design? For example,

previous research found that visual programming does not

improve readability for data flow languages [2].

• Does the data flow style influence the mental models [3]

that programmers develop about software or impacts their

approach to software comprehension?

To the best of our knowledge, only a few works [2, 4]

have investigated usability of data flow languages. We be-

lieve that to answer these questions researchers need differ-

ent approaches including qualitative studies to assess how

developers work, repositories and forum mining, as well as

controlled experiments that connect the data flow style to well

known cognitive theories on program comprehension [9].
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